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Abstrad-Calculations are made that determine the cross-sectional shapes of cylindrical or two- 
dimensional cavities that exhibit uniform radiation characteristics when the interior surface is a diffuse 
emitter. Immediate applications arise for concave cylindrical radiators or grooves on the surface of an 
opaque material when temperature is held fixed and uniform emission or heat flux is desired. Geometric 
inewdations between these and similar results for axially symmetric concavities are determined. 
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ANALYSIS 

IT is well known, by virtue of the radiation shape 
factor, that for three-dimensional shapes the 
interior of a spherical enclosure with an aperture 
yields uniform radiative heat flux for uniform 
surface temperature. In [l], Sparrow and 
Jonsson presented a summary analysis of the 
three-dimensional problem in a particularly 
concise form. Here, we show the two-dimensional 
analogue to their work along with some general- 
ization. The geometry of the sectional shape 
differs considerably in detail from the circular 
arc that generates the spherical enclosure but, 
otherwise, a formal parallelism exists in the 
expressions involving energy fluxes (rate of 
energy transport per unit area as a function of 
emissivity, absorptivity, and geometry) in the 
two cases. 

Consider an enclosure with an opening and 
con%nuous walls at constant temperature. The 
cavi€y receives no radiation from external 
s0u.w. In the two-dimensional case we refer to 
the cross section of the enclosure, and elemental 
areas are thought of as possessing unit width 
normal to the plane of the section; the three- 
dimensional case refers to an arbitrary surface 
in space. Let the emission be diffuse so that 
Lambert’s law applies. Absorption coefficient, a, 
and emission coefficient, E ,  are given average 
values over the frequency range of the radiation 
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and thus are parameters depending only on the 
nature of the surface material and its tempera- 
ture. If the local radiant flux leaving the surface 
(the so-called radiosity) is denoted by the point 
function B, local incoming radiation flux is H, 
and local net heat flux is Q, we have 

Q = B - - H  

B = <aT4 + (1  - a)H 

H = B dFl-2 (1) 

where dFl-2 is the angle factor between two 
surface elements. A concave enclosure is 
assumed so that the integration extends over the 
entire surface. The aperture plays a passive role 
and merely provides an avenue of escape of the 
net energy flux. 

If B, T,  Q, and H are uniform and if the 
contour of the surface is such that the integral 
of the differential shape factor over the surface 
is a constant K independent of position, we have 

B 
uT4 a 

(2) 

where K depends on the geometry of the 
enclosure. Thus, in both two and three dimen- 
sions a single figure suffices to show either the 
radiosity or the heat flux. Fig. 1 shows Q/euT4 
as a function of a and K.  

In three dimensions the desired geometrical 
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FIG. 1. Dimensionless heat flux as a function of 
absorption a and shape parameter K. 

shape is a spherical cap with circular aperture. 
In this case, as noted by Sparrow and Jonsson, 

where the notation is 
R, sphere radius ; 
h, 
0, 

height of spherical cap ; 
half-vertex angle of cone with vertex at 
center of sphere and passing through 
rim of aperture ; 
height of cap when the sphere geometry 
is scaled to give unit aperture radius. 

In two dimensions, the sectional shapes cannot 
be identified so directly but they can be calculated 
by solving a differential equation. As in Fig. 2 
let the aperture of the section of the cylinder 
have the length 2. Let P be an arbitrary point 
on the section, PN be normal to the section, RI 
and Rr be distances from point P to ( - I ,  0) 

7, 
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FIG. 2. Sketch showing co-ordinate system employed 
in deriving cylindrical section with uniform radiation 

characteristics. 

and (1, 0), respectively, and 01 and 0, be positive 
angles between the normal PN and the lines 
along which R1 and R, are measured. Then, 
from [2], p. 19 et seq., the integral of the shape 
factor yields the relation 

K = 9 (2 - sin 82 - sin Or). (4) 

Let Cartesian co-ordinates be used and the 
origin fixed so that the section is y = y(x) with 
y(x) = y ( - x )  and y(-1) = y(1) = 0. Equation 
(4) can be expressed in the differential form 

x -  1 i v y ’  x +  1 +yy’ - __ ~~ ~~ 

Ri Rr 
= 2 ( 1  ~ K ) ( l  + y’2y ( 5 )  

where 

Rr zz [(x ~- 1)2 + ~4]’ ,  R1 = [(x + 1)2 + y 2 ] ’ ,  

and the prime denotes x-wise differentiation. 
Equation (5)  has the integral 

where s is arc length measured from the point 
of symmetry of the curve. Equation (6) is an 
interesting quantitative relation that must hold 
for three distances associated with any position 
of the point P. It could presumably be used to 
design a linkage system that could generate the 
desired curve; we have used it merely as a check 
on the end results attained by carrying out a 
further integration of equation (6). Figs. 3a and b 
show the sectional shapes drawn as full lines. 
These calculations were programmed for an 
electronic computer. The dashed curves super- 
imposed on the figures show the spherical 
sections for the same values of K.  These curves 
can be used in conjunction with Fig. 1. 

Although the two-dimensional curves are 
symmetric, they differ from the circular-arc 
sections of the spherical enclosure in that a 
discontinuity in slope at the midpoint occurs. 
The slopes at the midpoint, y’(O), are related to 
the local ordinate, y(O), by the expression 

’ 

1 = (1 - K )  {[I + ~(0)~1[1 + y ’ (0 )2 ] } : .  (7) 

An additional relation of some interest 
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FIG. 3. Two- and three-dimensional shapes with uniform radiation characteristics ; 
K is geometric shape factor. 

follows directly from equation (6) evaluated at 
(- 1 , 0) or (1,O). This equality is 

so - 1 K = -  
so 

where so is half the total arc length of the section. 
Reinterpretation of equations (2), (3), and (8) 
permits one to formulate the following: 

Theorem : For d i f f i e  radiation, axially sym- 
metric or Iong cylindrical enclosures with apertures 
can be constructed to yield uniform radiosity and 
heat flux at constant temperature. Their radiative 

characteristics are fixed by the uniuersal function 
c/ [1  - (1 - a)Kl whereaisabsorptioncoefficient, 
E is emission coefficient, and K is a geometric 
shape factor that is numerically equal to one minus 
the ratio of aperture area to concave surface area. 
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R&m&On a fait des calculs pour determiner les formes des sections de cavitb cylindriques ou 
bi-dimensionnelles qui presenteet des caracteristiques de rayonnement unifome quand la surface 
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interieure a une emission diffuse. Des applications immediates se presentent pour des reflecteurs 
cylindriques concaves ou des rainures a la surface d’un niateriau opaque quand, la temperature etant 
maintenue constante, on desire avoir une emission ou un flux de chaleur uniformes. 

On a determine des relations geometriques entre ces rksultats et des resultats seniblables obtenus 
pour des concavites de revolution. 

Zusammenfassung-Zur Bestimmung der Querschnittsformen zylindrischer oder zweidimensionaler 
Hohlraume mit einheitlicher Strahlungscharakteristik bei diffus strahlender Innenflache, wurden 
Berechnungen durchgefuhrt. Eine unmittelbare Anwendung ergibt sich fur konkav zylindrische 
Strahler oder Kerben in der Oberflache undurchsichtiger Materialien mit vorgegebener Temperatur, 
wenn gleichmassige Abstrahlung oder konstanter Warmefluss erwunscht ist. Geometrische Wechsel- 
beziehungen zwischen diesen und ahnlichen Ergebnissen fur achsialsyninietrische Hohlraume sind 

angegeben. 


